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Abstract

We describe the set [X, Y] of path-components of pointed mapping spaces M. (X,Y’), where
X is chosen to be the reduced k™" suspension EFHP™ of a projective space HP™ for the skew
algebra H of quaternions and Y is a sphere S or FP" for F being the real numbers R, the
complex numbers C or H. In particular, the cohomotopy sets 7" (E*HP™) are studied for
k > 0 and certain m,n > 1.
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Introduction

Let M (X,Y) be the mapping space of all continuous maps between connected spaces X and Y with
the compact-open topology. These spaces are at the foundations of homotopy theory and appear in
the literature dating back, at least, to Hurewicz’s definition of the homotopy groups in the 1930s.
Works focusing explicitly on the homotopy theory of a mapping space first appear in the 1940s. The
space M (X,Y) is in general disconnected with path-components in one-to-one correspondence with
the set (X,Y) of (free) homotopy classes of maps. Furthermore, different components may—and
frequently do—have distinct homotopy types.

The space M(X,Y) has two close relatives. If X and Y are pointed spaces, we have M, (X,Y)
the space of basepoint preserving maps with path-components in one-to-one correspondence with
the set [X,Y] of based homotopy classes of maps. We write M;(X,Y) (M;.(X,Y)) for the path-
component containing a given (based) map f: X —» Y.

A basic problem in homotopy theory is to determine whether two path-components are homo-
topy equivalent or, more generally, to classify the path-components of M (X,Y") (resp. M.(X,Y))
up to homotopy type. Works on these classification problems date back to the 1940’s. White-
head [30, Theorem 2.8] considered the case X = S™, the m-sphere and proved that M;(S™,Y)
is homotopy equivalent to My(S™,Y) if and only if the evaluation fibration wy: M(S™,Y) - Y
admits a section, where 0 denotes the constant map. Then, results by Hansen [9], [10], and later by
McClendon [20] treated this classification problem as well. The case in which X is a manifold and
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Y = BG, the classifying space of a compact Lie group G, has been the subject of extensive recent
research by Crabb, Kono, Sutherland, Tsukuda, and others (see e.g., [3], [15], [27]). Then, Lupton
and Smith [18] gave a general method that may be effectively applied to the question of whether
two path-components of a mapping space M (X,Y’) have the same homotopy type provided X is a
co-H-space.

Now, let FP™ denote the projective n-space with n > 1 for F being the real numbers R, the
complex numbers C, or the skew R-algebra H of quaternions. In [5] and [6] the authors made use of
Gottlieb groups of spheres to deal with path-components of the spaces M (S™,S™) and M (S™,FP™)
for some m,n > 1, respectively. Then, [7]| concerns to the set [X, Y] of path-components of mapping
spaces M, (X,Y), where X is chosen to be E¥FP™ and Y is a sphere S® or FP" for F = R or C
only, where E* stands for the reduced £*" suspension functor.

The purpose of this paper is to extend results of [7] and study the set [X, Y] of path-components
of mapping spaces M, (X,Y), where X is chosen to be EXHP™ and Y is a sphere S" or FP" for
F = R,C or H. In particular, we describe cohomotopy groups 7" (E*HP™) for some k > 0 and
certain m,n > 1.

The set [HP™, HP™] of homotopy classes of pointed maps for n > 2 was extensively studied in
[8, Section 3] and path-components of M (HP™ HP"™) were described for n = 2, 3.

Although a number of papers have been devoted to the theoretical aspects of cohomotopy, few
cohomotopy groups have been computed. In [29] some cohomotopy groups of projective spaces
7™ (FP™) have been calculated by making use of the Puppe sequence. By [24], S-duality theorem
reduces the problem for the projective spaces to the calculation of the homotopy groups of the
Stiefel manifolds or the stunted quasi-projective spaces.

We follow [29] to update and extend computations of 7 (HP") on 7#"~*(E'HP") for k+1 < 6
with k,1 > 0 and n > 3.

Section 1 fixes up some notations and definitions, and necessary results as well. Then, Section 2
presents homotopies of maps in M(E*¥FP™ HP") and M(E*HP™ FP") for k > 0 and certain
m,n > 1. Proposition 2.3 shows that the degree of any non-trivial self-map on HP? is non zero
and there is an essential self-map on HP? with the trivial degree. Such a result has been obtained
by Marcum and Randall in [19] as well. A sufficient condition for the conjecture from [19] “... the
space HP™ admits an essential self-map with trivial degree provided n > 3” is stated in Remark 2.2.
Then, Proposition 2.8 updates and extends results [29, (14.1)—(14.3) Theorems and Remark] on
min=F(BHP™) for k+1 < 6 with £ > 0,7 >1and n > 3.

Crabb and Sutherland [2] (see also [21] and [23]) gave an explicit homotopy classification of
path-components of M (S, CP™), where S is any closed connected surface, and of M(CP™,CP"),
M(CP™ ,RP™) and M (RP™,RP™) for certain values of m,n > 1. When the domain is RP™, by [2,
Propositions 2.3 and 2.4] there is an interesting connection of path-components with Hurwitz-Radon
numbers.

We plan to use our presented results to extend Crabb and Sutherland’s classifications of path-
components of M (FP™,S™) and M(FP™ FP") for other m,n > 1 in a forthcoming paper.

1 Prerequisites

For topological spaces X and Y, let M (X,Y") be the space of all continuous maps equipped with the
compact-open topology. In the pointed case, for this space we write M, (X,Y). Let My(X,Y) (resp.
M., ¢(X,Y)) be the path-component of M (X,Y) (resp. M,(X,Y’)) containing a (resp. pointed) map
f+ X—=Y.
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For pointed spaces X and Y, denote by 7, (X) the n'" homotopy group of X and write (X,Y’)
and [X,Y] for the sets of homotopy classes of free and pointed maps, respectively. It is well
known that there is an action of the fundamental group m(Y) on [X,Y] and there is a bijection
(X,Y) ~ [X,Y]/m1(Y) provided X and Y are path-connected.

As it has been pointed out by Whitehead [30] all path-components of M, (S™, X) for the n-sphere
S™ have the same homotopy type. Moreover, Lang [16, Lemma 2.1] generalized this result for the
space M,(EX,Y), where EX is the reduced suspension of the pointed space X. In general, distinct
path-components of the space M, (X,Y) need not be homotopy equivalent.

We study the sets [E*FP™ FP"] and [EFFP™,S"] to classify path-components of the spaces
M, (FP™ FP") and M,(FP™,S™) up to homotopy type in a forthcoming paper.

Throughout the rest of this paper, all spaces are assumed to be path-connected, pointed com-
pactly generated and all maps are pointed maps. Further, we do not distinguish between a map
and its homotopy class and we freely use notations from Toda’s book [28].

Recall that given a map f: X — Y there is a cofibration

X i> Y — Cf,
where C is the mapping cone of f which yields the coexact Puppe sequence

_\k gk
xhyoco S ex 2 py s poy - prx VP gy prop
where 0: Cy — EX is the connecting map.
Next, for a CW-complex X with dim X < 2n — 2, a group structure can be defined on 7™ (X) =
[X,S"] in the following way. For a, 8 € 7" (X), one considers the map

(o x B)A: X = S™ x S",

where A is the diagonal map. In view of the restriction on the dimension of X, there is a unique
homotopy class of maps v: X — S™VS™ such that compositions with the natural inclusion S"VS"™ <
S™ x S™ are homotopic to (a x §)A. The homotopy class [Vv] € 7"(X), where V: §" vV §" — S”
is the folding map, is set to [o] + [8] € #"™(X). With respect to this operation the set 7™ (X) is an
abelian group, called the n®* cohomotopy group of X. For a CW-complex X with dim X < n we
have 7"(X) = 0. Thus, the functor 7" is of interest in dimensions from n to 2n — 2, that is, in the
so-called stable range.

Proposition 1.1 ([14, Proposition 3.2.2]). If X is an n-connected CTW-complex then the canonical
map X — QEX is a (2n + 1)-equivalence, for the loop functor .

Proposition 1.1 leads to the following version of the Freudenthal Suspension Theorem (see [14,
Corollary 3.2.3]).

Theorem 1.2. If Y is an n-connected CW-complex and X is a CW-complex then the maps of
homotopy classes
[X,Y] = [EX,EY] — [E*X,E?*Y] — ---

are surjections if dim X < 2n + 1 and bijections if dim X < 2n. In particular, the induced group
structure on [X,Y] is abelian.
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In addition, if dim X < 2n — 2 then 7"(X) ~ #""!(EX). This isomorphism is given by the
suspension map E,: [X,S"] — [EX, ES"] ~ [EX,S" 1],
The n'* stable cohomotopy group of a space X is defined by

72(X) = colimy, 7" (E* X).
Notice that Theorem 1.2 implies an isomorphism
(X)) ~ 7" tR (B X)

provided k > dim X — (2n — 2).

Let us point out that the groups 7% (FP™) have been described in [24] by means of homotopy
groups of Stiefel manifolds. Other results on cohomotopy groups can be found in [26].

Let F be the field of real numbers R, complex numbers C or the skew quaternion algebra H.
Write v, 5: ST =1 — FP™ for the canonical quotient map, p, p: FP* — FP"/FP"~! = S for
the pinching map, ipr: S¢ = FP! — FP" and imnF: FP™ — FP" for the canonical inclusion
maps, where d = dimg F is the dimension of F over R. Then, we recall the following results useful
in the sequel.

Proposition 1.3. If n > 1 then:
(1, [11, (2.10)(a)] and [29, (5.1) Lemma and (9.2) Lemma]) The composite map

1+ (=) 1)y, fF=R;
PnFYnF = § N2n ifF = (C,
Tle_n fF=H

with v = v, + a1(n) for n > 4.
(2, [1, Corollary 5.4.5]) Q(FP™) o~ Q(S4r+1)—1) x §d-1,

Notice that by dimension argument, the exact sequence

<o = [BTIFPTT ST R s [EYEPY FPTT), SR
[EIFPn,Sdnik] — [Elen7m7Sdnfk] — .

determined by the Puppe sequence associated to the cofibration FP"~™ — FP™ — FP™/FP"—™
yields:

Proposition 1.4. If k,l > 0and 1 <m <n — 1 then
[EZIE‘PTI7 Sdn—k} ~ [El (IFP”/FPn_m), Sdn—k}
provided k + 1 < dm — 2, where d = dimg F and
[EZIFPTL7 Sdn—k] — CokeI,([El—‘rl]FPn—m’ Sdn—k] — [El (FPTL/FP'IL—WL)7 Sdn—k])

for k+1=dm — 1.
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Consequently, Theorem 1.2 leads to
[IFP”, Sdnfkfl] ~ []Fpn/FPnfm, Sdnfkfl]

for k,1>0and 1 <m <n—1with k+1 < dm — 2 provided 2(k + 1+ 1) < dn, where d = dimg F.
In the sequel, we also need [7, Lemma 3.4]:

Lemma 1.5. Let f: X — CP", for n > 1. Then, there is a map f: X — S?"*! with f = 'yn,cf
if and only if the induced map f*: H>(CP™;Z) — H?*(X;Z) is trivial. Equivalently, the image
of the induced map (vnc)«: [X,S*"!] — [X,CP"] is given by maps f: X — CP" such that
f*: H*(CP™;Z) — H?(X;Z) is trivial.

In particular, the induced map (y,.c)«: [X,S*T!] — [X, CP"] is a bijection provided [X,S'] =
HY(X;Z) = HX(X;Z) = 0.

2 Homotopies of M(E*FP™ HP") and M(E*XHP™ FP")

If X is a CW-complex then, in view of Proposition 1.3(2), there is an isomorphism
[EX,HP"] ~ [X,S?]| ® [EX,S*13).
In particular, if dim X < 4n + 1 then there is an isomorphism
[EX,HP"] 2 [X,S?%].
Further, for a CW-complex X with dim X < 4n 4 2 we have
[X,HP"] ~ [X,HP" '] ~ [X, HP>)].

This implies
[RP™ HP>*] fF=Rand1l<m<4n+2;
[FP™ HP"] = < [CP™ HP>®] ifF=Cand1<m<2n+1;
[HP™ HP>] ifF=Hand1<m<n.

Hence, the classification of line bundles over HP™ is the same as the classification of self-maps on
HP™. Further, there is a chain of restriction maps

Z ~ [HP!,HP'] + [HP? HP?| < --- + [HP>,HP>].

Unfortunately, the classification of self-maps on HP"™ for n < oo is still an open problem. Given
f a self-map on HP", the degree of f is the integer deg(f) such that f*(x) = deg(f)z for the
induced map f*: H*(HP";Z) — H*(HP";Z) and a generator + € H*(HP";Z) ~ Z. Since the
space HP™ is 3-connected, the degree of f might be defined equivalently as the homotopy class in
m4(HP") =~ 73(S?) ~ Z of the restriction of f to S* = HP' C HP".

Hence, the effect of a self-map on homology is determined by its degree. If two self-maps on
HP™ induce the same homomorphism in homology does it follow that they are homotopic? Marcum
and Randall gave a negative answer to this question in [19]. For n = 3,4, 5 they found an essential
self-map on HP™ which induces the trivial homomorphism in homology.

By [21, Theorem 2.5], two self-maps on HP™ induce the same homomorphism in homology if
and only if they are stably homotopic for n < cc.
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But, for n = co we have the following situation. We say that a self-map f: HP* — HP> has
degree deg(f) = d if the corresponding self-map on Q(HP>) = S? has degree d in the usual sense.
It is well known that deg(f) is zero or an odd square integer [4]. In view of [22, Classification
Theorem], self-maps on HP> are classified, up to homotopy, by their degree.

The cofibration S#+3 ™%, HP" < HP"+! shows that the obstruction to extending a map
f:HP™ — HP>™ to HP" ! is o(f) = fyam € Tans3(HP™®). But, f = i, 0o mf’ for the canonical
inclusion 4, oo g: HP™ < HP> and some f': HP™ — HP". Hence, alternatively we have fr, u =
in,oo,Hf/’yn,H~
Remark 2.1. Let f: HP"™' — HP"™. Since the map i, nt1m7nm: ST — HP" ! is homotopy
trivial, we get that the map fi,, »+1 m7Yn,m is homotopy trivial as well. Thus, by quaternionic versions
of [7, Lemma 3.1 and Remark 3.2], we have the relation [fi, n+1,57nm) = (deg(finnt1,m)" T [ynm =
0 for homotopy classes in the group 4,43 (HP™).

Hence, deg(fin n+1,m) = 0 and consequently the image of the map

(in,n+k,H)*: [HPnJrk,Hpn] — [Hpn,HPn]
coincides with maps of trivial degree for k > 1.

Certainly, [HP!, HP'] ~ Z. Further, the restriction map [HP" ™ HP"T!] — [HP", HP"| for
n > 1 might be included into an exact sequence. Namely, the Puppe sequence associated to the
cofibration S#+3 2% H P <y HP"+! leads to the exact sequence

RN [E2H.Pn+1,HPn+1} — [E2HPn,HPn+1] N [S4n+5,HPn+1} N [EHPR+17HPH+1] N
[EHP™, HP" ] — [§'" T HP ] - [HP" T, HP" ] — [HP", HP" ] — [S*" 3 HP ],

or equivalently (using skeleton arguments and the homotopy equivalence S* ~ Q(HP>)), to the
following one

- — [EHP" 3] — [EHP™,S?] — [S'"T,S%] = [HP" L, S
] (1.1)
— HP", S % [§9+3, 8% — [HP", HP"H] — [HP", HP"] — [S"+2,§7].

Remark 2.2. Recall that, by [19, Conjecture| the space HP™*! admits an essential self-map with
trivial degree provided n > 2. This was verified for n = 2,3,4 in [19] and then for n = 5,6 in [25].
Notice that this Conjecture will follow from (1.1) if we can show that the map 9*: [HP",S3] —
[S*n+3 S3] is not surjective.

Proof. To prove the last statement, let the map 9*: [HP",S3] — [S**3/S3] be not surjective.
Then, by the exact sequence

0 — Imo* — [S*13 8% — [HP" T, HP" ] — [HP", HP"] — [S*"*2,§%],

the map [S*+3,S3] — [P+ HP"*!] is non trivial.

Now, for a € [S¥+3,S%] \ Imd*, we take its adjoint a: S¥"+* — HP>. Thus, the map
appi1m: HP" — HP> determines an essential self-map f: HP"™ — HP"*! with deg(f) =0
and the proof is complete. Q.E.D.
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Now, we analyse the restriction maps [HP?, HP?] — [HP!, HP!] and [HP3, HP3] — [HP? HP?]
to state:

Proposition 2.3. There are exact sequences of pointed sets:

(1) 0 — [HP?,HP? — [HP', HP'] — [S5 S?. This implies that only the trivial self-map on
HP? has the trivial degree.

(2) 0 — [SY,S%] — [HP3 HP? — [HP? HP? — [S'°,S%]. This implies the existence of an
essential self-map on HP? with the trivial degree.

We point out that (1) and (2) have been already shown, using different methods, by Marcum
and Randall in [19].

Proof. (1): First, to make use of the exact sequence (1.1), we show that the map [S* S3] =
[HP!,S3] — [S7,S?] is surjective. In view of [28, Chapter V], we have [HP! S?] = m,(S?) =
Zo{ns}, [S7,S%] = 77(S3) = Za{v/n6} and, by [28, (5.9)], n3va = v/n6. But, as it is well-known,
7 = (s + o1(4)) (mod EV'), nzai(4) = 0 and, by [28, Lemma 5.7], it holds E(nv’) = 0.
Hence, the map [S*, S?] = [HP!,S3] — [S7,S?] is surjective and, by means of (1.1), we get the exact
sequence

0 — [HP? HP?] — [HP*,HP'] — [S°,S?]

and so only the trivial self-map on HP? restricts to the trivial self-map on HP!.
(2): To analyse [HP? HP3], we first compute [HP?,S3]. For this purpose, consider the exact
sequence
oo — [EHP,S% — [$3,§?] — [HP?,S%]) — [HPL,S?] — [S7, S

determined by the Puppe sequence associated to the cofibration S” — HP' < HP?. Since, by the
proof of (1), the map [S*,S3] = [HP!,S3] — [S7,S3] is also an isomorphism, we derive that the map
[HP2,S3] — [HP!,S?] is trivial.

Now, we show that the map [EHP!,S3] — [S®,S3] is trivial as well. But, [EHP!,S3] = 75(S?)
Zo{nanz} and E(n2v') = 0. Even though nsvy = v/ng # 0, by Evim = +(vs5 + 1(5)) (mod E*/
and E*v' = 2v;5 ([28, (5.5)]), we get nanaEvim = n3navs = 3 E(n3va) = 3 E(v'ne) = E(n2v )iz
0. Finally, we have a bijection

~—

Zo{v'menr} = [8%,8%] 220, P2, 89,

Furthermore, [S®,S3] = 73(S?) = Za{v'nenr} and, by Proposition 1.3(1), we have the relation
V'nenrpemyem = V'nenz(2vs) = 0. Hence, we get that the map 0*: [HP?,S?] — [S',S?] is trivial.
Consequently, in view of (1.1), we obtain the exact sequence

0 — [S',§% — [HP3 HP?] — [HP? HP? — [S',§?,

where Zo{e3} = [S'1, S?] = [S!2, HP*>®] = Zy{&3} for &5: S'?2 — HP> being the adjoint of 3: S —
S3. Then, the map &3ps pr: HP? — HP> determines an essential self-map f: HP? — HP? with
deg(f) = 0 and the proof is complete. Q.E.D.

Proposition 2.3 and Remark 2.1 yield:
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Corollary 2.4. There is a bijection
711 (S?) = Zo{es} ~ [82, HPY) 220, [1P3 HP2).

Proof. Proposition 2.3(1) and Remark 2.1 imply that the map
(iz3m)*: [HP? HP?] — [HP? HP?)

is trivial. Hence, the Puppe sequence associated to the cofibration S -2 HP? — HP? leads to
the exact sequence

(Ev2,m)”
— 2

.. = [EHP? HP] s2,mp?) P2 mps HP?) 0.

Consequently, there is a bijection

[S'2, HP?)/(Evem)* [EHP? HP?| & [HP? HP?.
But, [FHP? HP?| = [EHP? HP>] = [HP?,S?] = Zo{v'nen7peu}. Furthermore, by the proof of
Proposition 2.3(2), we have v/ngnzpemy2m = 0. Consequently, (Evom)*[EFHP? HP?] = 0 and we
get the required bijection

11 (SP) = Zo{es) ~ [8'2, HP? 225, (HP3 HP. Q.m.D.

Next, recall that [29, (14.1)—(14.3) Theorems and Remark] state:
Theorem 2.5. (1) If n > 1 then 7"~ (HP™) ~ Zj is generated by 74— 1Pn 1-
(2) If n > 2 then 74" ~2(HP") ~ Z, is generated by 73, _opnu, and
0, forn=0,2 (mod 6);
Z4, Z12 or Z24 fOI‘ n=1 (mOd 6),

Zo, 74 or Zg forn =3,5 (mod 6);
Zs forn=4 (mod 6)

T3 (HP) &

is generated by v} _.p,u.
(3) If n > 3 then 7"~ 4(HP") ~ Z, and 74" ~5(HP") ~ Z,.
(4) If n > 4 then 71" ~C(HP") ~ Z4 or Zy & Zs, and 7*"~7(HP™) has order at most 5,760.
(5) If n > 5 then 4" 8(HP") ~ Z ® Zs or Z D Za ® Zo.
First, to complete Theorem 2.5, we recall that by [13] there is a bijection
T (EP?) = (pan) s (S™) ~ ms (") (v ) (7).

Now, we present some details on that result.
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0 fork<Oork=3,7,38,
Proposition 2.6. 78 F(HP?) ~<{7Z for k=0,
Zo for k=1,2,4,56.

Proof. Certainly, 78~ %(HP2) = 0 if k < 0, 78 F(HP?) ~ Z if k = 0 and 75 *(HP?) = 0if k = 7,8.
Next, consider the exact sequence

(Ev1,m)"
1,H

-+ [EHP',$5H] [S°,55%] - [HP2,§8%] - [P, §5%) 220, (57 g8k)

associated to the cofibration 7 % HP! < HP? and recall that v 1 = +(v4 4 a1(4)) (mod Ev/)
for y1p: S” — HP! =S*,
If £ =1,2 then we get

777(HP2) = Z2{777p2,H} and WG(HPZ) = Zz{’léPz,H]’,

respectively.
If kK = 3 then we easily deduce that

7o (HP?) = 0.

If k = 4 then [, §*] = Z{v{ }®Z{EV'}, [EHP', S| ~ [S°,§] = Za{m}, [S*,§"] = Zo{vanr} &
Z2{(EvV')n;} and nuvs = (EV')n;. Hence, we derive that

T (HP?) = Zo{vanrp2,u}-

If k =5, since [S7,S?] = Zo{v'n6}, [S*,S?] = Zo{ns} and nsvy = v'ns, we deduce that the
map (y1m)*: [S%S?] — [S7,S%] is an isomorphism. Next, [S8,S3] = Zy{v/n2} and [EHP!,S?] ~
[S5,S3] = Za{n3}. Then, the relations nzvy = v'ng and E(ner') = 0 imply that the map
(Eyim)*: [EHP, S3] — [S8,S?] is trivial. Consequently, we have

T (HP?) = Zo{v/ripas).

If k = 6, since [S7,S?] = Zo{nmav/'ns}, [S*,S?] = Zo{n3}, and n3v4 = v'ng, we deduce that the
map (y1m)*: [S*,S?] — [S7,S?] is an isomorphism. Next, [S®,S?] = Zy{nev/n¢} and [EHP!,S?] ~
[S®,S?] = Za{n3}. Then, the relations E(nor') = 0 and n3vy = v'ng ([28, Lemma 5.7 and (5.9)])
imply that the map (Evym)*: [EHP,S?] — [S8,§?] is trivial. Consequently, we have

72 (HP?) = Zo{nov'ngp2u}
and the proof is complete. Q.E.D.
Remark 2.7. (1) By making use of the Hopf fibration 7 : S* — S2, we have the exact sequence
0 = [E*HP",S'] — [E*HP",S%] 224 [E¥HP", S?] L5 [E*HP™, BS']

for k > 0 and n > 1. But, the group [E¥HP", BS'| ~ H?(E*HP";Z) = 0. Consequently, we get
the bijection
v : T (EFHP™) 25 72(EFHP™)
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for k > 0 and n > 1. Then, the homotopy equivalence S* ~ Q(HP>) leads to a bijection
7T2 (EkHPn) i) [Ek+1HPn, HP'(H—[%]]

for kK > 0 and n > 1 with the integral part [r] of a real number 7.
(2) The cohomotopy groups 7" (E"*HP?) for |k| < 3, n > 1 have been described in [12] and
for k =4,5, n > 2 in [17]. Furthermore, (1) implies bijections

[EF3HP2, HP?] for -3 <k <0,
2(E*2HP?) ~ { [EFH3HP?2 HP?] for 1 < k < 4,
[EF+3HP2, HPY] for k = 5.
Now, we update Theorem 2.5(2),(4) and apply Proposition 1.4, to describe 7"~k (E'HP™) for

k+1<6withk>0,]>1andn > 3. Setting (a,b) for the greatest common divisor of integers
a,b, we state:

Proposition 2.8. If n > 3 then:

(1) 7T4n—3(HPn) ~ 7'('4”(84”_3)/(24,7} _ 1>7T4n(S4n_3)1;

TS (HP" 1) = Zo{n3,_opn—11} for n odd,
T4n (S76) @ A =C(HP" 1) = Zo{v,_¢} ® Za{n3,_opn-1m} for n even;

(2) w4 =S (HP") ~ {

Tans1(S) for £ =0,
Tane1 (S for k =1,
(3) T FH(EHP™) &  Tan41(S*"72)/(24,n = V)7an41(S™72)  for k=2,
Z for k = 3,
Tan—3(S14) for k=14

and there is the short exact sequence

0— Tan+1 (S4n_5)/(24, n— 1)7T4n+1(84n_5) — 7T4n_5(EHPn) — 7T4n,3(S4n_5) — 0;

7T4n+2(S4") for k = O,
(4) 7T4n_k(E2HPn) ~ 7T4n+2(S4n_1)/(24,’/l — 1)7T4n+2(S4n_1) for k=1,
Z for k = 2,
Tan_o(S473) for k=3

and there is the short exact sequence

0 = Tun42(S™ 74/ (24,0 — D)Tan2(S" 1) = 7' E?HP") = m4n—2(S™ 1) = 0;

Tan+3(S*)/(24,n — 1)T443(S*)  for k =0,
(5) 74—k (E3HP™) ~ { Z for k =1,

Tan—1(S*~2) for k=2
and there is the short exact sequence

0 = Tuns3(S™73) /(24,1 — D) Tanps(S73) = 74 3(E3HP™) = m4p_1 (S 73) = 0;

1We have been informed by J. Mukai that this result has been also shown by H. Sunohara in 2000.




Homotopies of maps and cohomotopy groups 177

Z for k =0,
Tan(S7Y) for k=1
and there is the short exact sequence

(6) minF(E'HP") ~ {

0 = Tunsa(S™72) /(24,1 — ) 74na(S72) = 7" 2(E*HP") — 140 (S 72) — 0;
(7) w4 (ESHP™) & a1 (S*°)
and there is the short exact sequence

0— 7r4n+5(S4"_1)/(24, n— 1)7r4n+5(84"_1) — 7T4”_1(E5]HIP”) — 7r4n+1(S4”_1) — 0;

(8) there is the short exact sequence
0 = Tuni6(S*™) /(24,0 — 1) Tan46(S*™) — 7 (ESHP™) = man42(S*™) — 0.
Proof. (1): Since [HP"~1,S%=3] = 0, the Puppe sequence associated to the cofibration
sin—1 L gpr-l oy HPT

yields the exact sequence
oo = [EHP",§5] o [BHP!, sin-3) L0t (gin gin=3) _, [grpn gin=3] _, ),

Next, the suspension bijection [HP"~1,$**~4] = [EHP"~!,$*~3] and [HP"~1,S*"*] = Z{p,_1.:}

lead to Im ([EEP"~1, §4n=3) L2000, (gin gin=3]) = (n—1)[g", §4=3] = (24, n—1)[S*", §47 9],
Consequently,
T3 (HP™) & 4 (ST73) /(24,0 — 1) 740 (ST 73).

(2): Since [S*~1 S*=6] = 0, the Puppe sequence associated to the cofibration
gin-t L gpr-l oy HPT

yields the exact sequence

(E'Ynfl,H)*
_—

RN [EHPn717S4n76] [S4n784n76} N [Hpn’gélnffi} — [Hpnfl,S4n76] = 0.

Next, the suspension bijection []I—]IP”*l’S4n*7] i [EHPn71’S4n76] and [HP"*l,S4”*7]
={v) .pn_1m} lead to:

(i): if n is even then the map [EHP"~ ! S*—6]
quently,

Eynri)”, [S*,S#7=6] is surjective. Conse-
O HP") & O (HP ) = Zo{n, _¢pn-1u);

(ii): if n is odd then the map [EHPn—1,§in—6] (Zin12)7,

have the short exact sequence

[Si,S§4=6] is trivial. Hence, we

0 — [S*,§1"76] — [HP", S0 — [HP" !, S - 0.
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Since 1, _oPn—1m¥n—1m = (0 — )i, ovi,_y = 0, we get an extension 73, _gPn—1u
= Man—6Nan—5Pn—1,0 € [HP"™,S*=6] of the generator nin_ﬁpn_l,H € [HP"~1,§*"=6] (Theorem
2.5(2)) which leads to a splitting of that short sequence. Hence,

T O (HP™) & myp (ST70) @ 7O (HP ) = Zo{vd, 6} @ Zo{ni,_oPn—1u}-

(3)-(8): Let n > 3. Notice that Proposition 1.3 and the pushout

Pn—1,H

S4rjl Tn-1.H Hpnfl Hpnfl/HPn72
Din HP™ HP" /HP"~2

yield HP™ /HP"=? ~§*"~4y, |+ e Thus, we have a cofibration

4(n—1)

(

S4n—1 n_l)y‘:r("*l) S4n—4 SN HPTL/HPTL—Q

which leads to the exact sequence

("_1)(Vzrn+z—3)*
S —

SR [S4n-H—37 S4n—k] [S4n+l7 S4n—k] N [El (]HLPTL/]HLPTL—Q)7 S4n—k] N

(nfl)(’/z—nﬁ,zle)*
-

[S4n+lf47 S4n7k] [S4n+l71, S4nfk]

for k,1 > 0 and n > 3. Next, in view of Proposition 1.4, we have
[ElHPn7 S4n—k} ~ [El (HP”/HPTL_Z), S4n—k]

for k+1 <6 with k,l > 0 and n > 3.

Then, we apply presentations of homotopy groups 7,,4,(S™) for 0 < i < 6 (|28, Chapter V]) and
Vi nas = Unfinys = 0 for n > 6 ([28, (3.9)]). If I = 0 then we get 7*"(HP") ~ Z and 74" ~*(HP")
for 1 <k < 6 as stated in Theorem 2.5. Whereas, for 1 <[ < 6 we get the statements (1)—(6) and
the proof is complete. Q.E.D.

Since EFHP™ is l-connected, we have [EFHP™ RP"] = [E*HP™ S"] for k > 0. Next,
H2(EFHP™,7) = 0 and Lemma 1.5 yields [E¥HP™ CP"| = [EFHP™ S2+1] for k > 0. Now,
consider 4m < n and notice that [HP™,S"] = [HP™,S*] = 0. This implies [HP™,RP"] =
[HP™ RP>*] = 0. Also, by Hopf Theorem [HP™ RP*™| = [HP™, S*"] = H*™(HP™,Z) ~ Z.
Consequently, applying Theorem 2.5 and Proposition 2.8, we may state:

Corollary 2.9. (1) If n > 1 then [HP",CP*"~!] =~ [HP",RP*"~!] = Zy;

(2) if n > 2 then [HP", RP*"2] ~ Z,;
[S4n,s4n—3

(3) if n > 2 then [HP", CP?"~2] ~ [HP",RP*" 3] ~ WSL]

(4) if n > 3 then [HP",RP*" 4] ~ Z;
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(5) if n > 2 then [HP",CP?"3] ~ [HP", RP*"~5] ~ Z;

(7) if n > 4 then [HP",CP?"~%] ~ [HP",RP*~"] has order at most 5,760;
(8) if n > 5 then [HP",RP*" 8| ~ Z & Zy or Z ® Lo ® Lso.
Applying Theorems 1.2, 2.5 and Proposition 2.8, we get:
Corollary 2.10. (1) If n > 1 then [EHP", RP*"| ~ Z;

(2) if n > 2 then [EHP",RP*"~1] ~ [EHP", CP?>"~1| » Zy;

4n gd4n—3
(3) if n > 2 then [EHP", RP" 2] ~ Ll o
(4) if n > 3 then [EHP",CP?*"~%] ~ [EHP",RPY" 3| ~ Z;
(5) if n > 3 then [EHP", RP" 4] ~ Zy;

(6) if n > 4 then [EHP"™, CP?"—3] ~ [EHP", RP—5) ~ {;i —— iiz iz Z‘Vji;
(7) if n > 4 then [EHP",RP*"~6] has order at most 5,760;
(8) if n > 5 then [EHP",CP* 4] ~ [EHP",RP*" 7|~ Z @ Zy or Z @ Zy ® Zo.

We close the paper with:

Remark 2.11. (1) Lemma 1.5 leads to [E*HP™,CP"| ~ [E*HP™,S**!] for k,m,n > 0.
Hence, for k + 4m < 2n + 1 we have [EFHP™, CP"] ~ [E¥HP™,S?*"*1] = 0 and
[E2nf4m+lHPm7(CPn] ~ [E2n74m+1HPm7S2n+l] ~ 7.

If m < n then (by means of skeleton reasons):

2. [RP4m+k HP ~ [RPY™+k HP™| ~ [RPY™+F HP>] for k = 0, 1,2;
3. [CP2m+k HP" ~ [CP?M+k HP™| ~ [CP?™+F HP*] for k =0, 1;
[HP™ HP"| ~ [HP™, HP>);

[ERP4™+k HP"| &~ [ERPY™+F HP™] ~ [RP*™+* S for k = 0, 1;
[ECP2m+k HP"| ~ [ECP?™+k HP™] ~ [CP?+* S for k = 0, 1;

NS o e

[EHP™ HP"| ~ [HP™,S3;

4m 4m

8. [E?FP ¢ HP"| ~ [EFP 4 ,S3 for F = R,C or H, where d = dimg F.
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