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Abstract

We describe the set [X,Y ] of path-components of pointed mapping spaces M∗(X,Y ), where
X is chosen to be the reduced kth suspension EkHPm of a projective space HPm for the skew

algebra H of quaternions and Y is a sphere Sn or FPn for F being the real numbers R, the
complex numbers C or H. In particular, the cohomotopy sets πn(EkHPm) are studied for

k ≥ 0 and certain m,n ≥ 1.
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Introduction

LetM(X,Y ) be the mapping space of all continuous maps between connected spaces X and Y with
the compact-open topology. These spaces are at the foundations of homotopy theory and appear in
the literature dating back, at least, to Hurewicz's de�nition of the homotopy groups in the 1930s.
Works focusing explicitly on the homotopy theory of a mapping space �rst appear in the 1940s. The
spaceM(X,Y ) is in general disconnected with path-components in one-to-one correspondence with
the set 〈X,Y 〉 of (free) homotopy classes of maps. Furthermore, di�erent components may�and
frequently do�have distinct homotopy types.

The space M(X,Y ) has two close relatives. If X and Y are pointed spaces, we have M∗(X,Y )
the space of basepoint preserving maps with path-components in one-to-one correspondence with
the set [X,Y ] of based homotopy classes of maps. We write Mf (X,Y ) (Mf∗(X,Y )) for the path-
component containing a given (based) map f : X → Y .

A basic problem in homotopy theory is to determine whether two path-components are homo-
topy equivalent or, more generally, to classify the path-components of M(X,Y ) (resp. M∗(X,Y ))
up to homotopy type. Works on these classi�cation problems date back to the 1940's. White-
head [30, Theorem 2.8] considered the case X = Sm, the m-sphere and proved that Mf (Sm, Y )
is homotopy equivalent to M0(Sm, Y ) if and only if the evaluation �bration ωf : Mf (Sm, Y ) → Y
admits a section, where 0 denotes the constant map. Then, results by Hansen [9], [10], and later by
McClendon [20] treated this classi�cation problem as well. The case in which X is a manifold and
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Y = BG, the classifying space of a compact Lie group G, has been the subject of extensive recent
research by Crabb, Kono, Sutherland, Tsukuda, and others (see e.g., [3], [15], [27]). Then, Lupton
and Smith [18] gave a general method that may be e�ectively applied to the question of whether
two path-components of a mapping space M(X,Y ) have the same homotopy type provided X is a
co-H-space.

Now, let FPn denote the projective n-space with n ≥ 1 for F being the real numbers R, the
complex numbers C, or the skew R-algebra H of quaternions. In [5] and [6] the authors made use of
Gottlieb groups of spheres to deal with path-components of the spacesM(Sm,Sn) andM(Sm,FPn)
for somem,n ≥ 1, respectively. Then, [7] concerns to the set [X,Y ] of path-components of mapping
spaces M∗(X,Y ), where X is chosen to be EkFPm and Y is a sphere Sn or FPn for F = R or C
only, where Ek stands for the reduced kth suspension functor.

The purpose of this paper is to extend results of [7] and study the set [X,Y ] of path-components
of mapping spaces M∗(X,Y ), where X is chosen to be EkHPm and Y is a sphere Sn or FPn for
F = R,C or H. In particular, we describe cohomotopy groups πn(EkHPm) for some k ≥ 0 and
certain m,n ≥ 1.

The set [HPn,HPn] of homotopy classes of pointed maps for n ≥ 2 was extensively studied in
[8, Section 3] and path-components of M(HPn,HPn) were described for n = 2, 3.

Although a number of papers have been devoted to the theoretical aspects of cohomotopy, few
cohomotopy groups have been computed. In [29] some cohomotopy groups of projective spaces
πm(FPn) have been calculated by making use of the Puppe sequence. By [24], S-duality theorem
reduces the problem for the projective spaces to the calculation of the homotopy groups of the
Stiefel manifolds or the stunted quasi-projective spaces.

We follow [29] to update and extend computations of πm(HPn) on π4n−k(ElHPn) for k+ l ≤ 6
with k, l ≥ 0 and n ≥ 3.

Section 1 �xes up some notations and de�nitions, and necessary results as well. Then, Section 2
presents homotopies of maps in M(EkFPm,HPn) and M(EkHPm,FPn) for k ≥ 0 and certain
m,n ≥ 1. Proposition 2.3 shows that the degree of any non-trivial self-map on HP 2 is non zero
and there is an essential self-map on HP 3 with the trivial degree. Such a result has been obtained
by Marcum and Randall in [19] as well. A su�cient condition for the conjecture from [19] �. . . the
space HPn admits an essential self-map with trivial degree provided n ≥ 3� is stated in Remark 2.2.
Then, Proposition 2.8 updates and extends results [29, (14.1)�(14.3) Theorems and Remark] on
π4n−k(ElHPn) for k + l ≤ 6 with k ≥ 0, l ≥ 1 and n ≥ 3.

Crabb and Sutherland [2] (see also [21] and [23]) gave an explicit homotopy classi�cation of
path-components of M(S,CPn), where S is any closed connected surface, and of M(CPm,CPn),
M(CPm,RPn) andM(RPm,RPn) for certain values of m,n ≥ 1. When the domain is RPm, by [2,
Propositions 2.3 and 2.4] there is an interesting connection of path-components with Hurwitz-Radon
numbers.

We plan to use our presented results to extend Crabb and Sutherland's classi�cations of path-
components of M(FPm,Sn) and M(FPm,FPn) for other m,n ≥ 1 in a forthcoming paper.

1 Prerequisites

For topological spaces X and Y , letM(X,Y ) be the space of all continuous maps equipped with the
compact-open topology. In the pointed case, for this space we writeM∗(X,Y ). LetMf (X,Y ) (resp.
M∗f (X,Y )) be the path-component ofM(X,Y ) (resp.M∗(X,Y )) containing a (resp. pointed) map
f : X → Y .
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For pointed spaces X and Y , denote by πn(X) the nth homotopy group of X and write 〈X,Y 〉
and [X,Y ] for the sets of homotopy classes of free and pointed maps, respectively. It is well
known that there is an action of the fundamental group π1(Y ) on [X,Y ] and there is a bijection
〈X,Y 〉 ≈ [X,Y ]/π1(Y ) provided X and Y are path-connected.

As it has been pointed out by Whitehead [30] all path-components ofM∗(Sn, X) for the n-sphere
Sn have the same homotopy type. Moreover, Lang [16, Lemma 2.1] generalized this result for the
spaceM∗(EX,Y ), where EX is the reduced suspension of the pointed space X. In general, distinct
path-components of the space M∗(X,Y ) need not be homotopy equivalent.

We study the sets [EkFPm,FPn] and [EkFPm,Sn] to classify path-components of the spaces
M∗(FPm,FPn) and M∗(FPm,Sn) up to homotopy type in a forthcoming paper.

Throughout the rest of this paper, all spaces are assumed to be path-connected, pointed com-
pactly generated and all maps are pointed maps. Further, we do not distinguish between a map
and its homotopy class and we freely use notations from Toda's book [28].

Recall that given a map f : X → Y there is a co�bration

X
f−→ Y ↪→ Cf ,

where Cf is the mapping cone of f which yields the coexact Puppe sequence

X
f−→ Y ↪→ Cf

∂−→ EX
−Ef−−−→ EY → ECf → · · · → EkX

(−1)kEkf−−−−−−→ EkY → EkCf → · · · ,

where ∂ : Cf → EX is the connecting map.
Next, for a CW -complex X with dimX ≤ 2n−2, a group structure can be de�ned on πn(X) =

[X,Sn] in the following way. For α, β ∈ πn(X), one considers the map

(α× β)∆: X → Sn × Sn,

where ∆ is the diagonal map. In view of the restriction on the dimension of X, there is a unique
homotopy class of maps γ : X → Sn∨Sn such that compositions with the natural inclusion Sn∨Sn ↪→
Sn × Sn are homotopic to (α × β)∆. The homotopy class [∇γ] ∈ πn(X), where ∇ : Sn ∨ Sn → Sn
is the folding map, is set to [α] + [β] ∈ πn(X). With respect to this operation the set πn(X) is an
abelian group, called the nth cohomotopy group of X. For a CW -complex X with dimX < n we
have πn(X) = 0. Thus, the functor πn is of interest in dimensions from n to 2n− 2, that is, in the
so-called stable range.

Proposition 1.1 ([14, Proposition 3.2.2]). If X is an n-connected CW -complex then the canonical
map X → ΩEX is a (2n+ 1)-equivalence, for the loop functor Ω.

Proposition 1.1 leads to the following version of the Freudenthal Suspension Theorem (see [14,
Corollary 3.2.3]).

Theorem 1.2. If Y is an n-connected CW -complex and X is a CW -complex then the maps of
homotopy classes

[X,Y ]→ [EX,EY ]→ [E2X,E2Y ]→ · · ·

are surjections if dimX ≤ 2n + 1 and bijections if dimX ≤ 2n. In particular, the induced group
structure on [X,Y ] is abelian.
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In addition, if dimX ≤ 2n − 2 then πn(X) ≈ πn+1(EX). This isomorphism is given by the
suspension map E∗ : [X,Sn]→ [EX,ESn] ≈ [EX, Sn+1].

The nth stable cohomotopy group of a space X is de�ned by

πnS(X) = colimk π
n+k(EkX).

Notice that Theorem 1.2 implies an isomorphism

πnS(X) ≈ πn+k(EkX)

provided k ≥ dimX − (2n− 2).
Let us point out that the groups πnS(FPm) have been described in [24] by means of homotopy

groups of Stiefel manifolds. Other results on cohomotopy groups can be found in [26].
Let F be the �eld of real numbers R, complex numbers C or the skew quaternion algebra H.

Write γn,F : Sd(n+1)−1 → FPn for the canonical quotient map, pn,F : FPn → FPn/FPn−1 = Sdn for
the pinching map, in,F : Sd = FP 1 ↪→ FPn and im,n,F : FPm ↪→ FPn for the canonical inclusion
maps, where d = dimR F is the dimension of F over R. Then, we recall the following results useful
in the sequel.

Proposition 1.3. If n ≥ 1 then:
(1, [11, (2.10)(a)] and [29, (5.1) Lemma and (9.2) Lemma]) The composite map

pn,Fγn,F =


(1 + (−1)n−1)ιn if F = R;

nη2n if F = C;

nν+4n if F = H

with ν+n = νn + α1(n) for n ≥ 4.
(2, [1, Corollary 5.4.5]) Ω(FPn) ' Ω(Sd(n+1)−1)× Sd−1.

Notice that by dimension argument, the exact sequence

· · · → [El+1FPn−m,Sdn−k]→ [El(FPn/FPn−m),Sdn−k]→
[ElFPn,Sdn−k]→ [ElFPn−m,Sdn−k]→ · · ·

determined by the Puppe sequence associated to the co�bration FPn−m ↪→ FPn → FPn/FPn−m
yields:

Proposition 1.4. If k, l ≥ 0 and 1 ≤ m ≤ n− 1 then

[ElFPn,Sdn−k] ≈ [El(FPn/FPn−m),Sdn−k]

provided k + l ≤ dm− 2, where d = dimR F and

[ElFPn,Sdn−k] = coker
(

[El+1FPn−m,Sdn−k]→ [El(FPn/FPn−m),Sdn−k]
)

for k + l = dm− 1.
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Consequently, Theorem 1.2 leads to

[FPn,Sdn−k−l] ≈ [FPn/FPn−m,Sdn−k−l]

for k, l ≥ 0 and 1 ≤ m ≤ n− 1 with k + l ≤ dm− 2 provided 2(k + l+ 1) ≤ dn, where d = dimR F.
In the sequel, we also need [7, Lemma 3.4]:

Lemma 1.5. Let f : X → CPn, for n ≥ 1. Then, there is a map f̃ : X → S2n+1 with f = γn,Cf̃
if and only if the induced map f∗ : H2(CPn;Z) → H2(X;Z) is trivial. Equivalently, the image
of the induced map (γn,C)∗ : [X,S2n+1] → [X,CPn] is given by maps f : X → CPn such that
f∗ : H2(CPn;Z)→ H2(X;Z) is trivial.

In particular, the induced map (γn,C)∗ : [X,S2n+1]→ [X,CPn] is a bijection provided [X,S1] =
H1(X;Z) = H2(X;Z) = 0.

2 Homotopies of M(EkFPm,HP n) and M(EkHPm,FP n)

If X is a CW -complex then, in view of Proposition 1.3(2), there is an isomorphism

[EX,HPn] ≈ [X,S3]⊕ [EX, S4n+3].

In particular, if dimX ≤ 4n+ 1 then there is an isomorphism

[EX,HPn]
≈−→ [X,S3].

Further, for a CW -complex X with dimX ≤ 4n+ 2 we have

[X,HPn] ≈ [X,HPn+1] ≈ [X,HP∞].

This implies

[FPm,HPn] ≈


[RPm,HP∞] if F = R and 1 ≤ m ≤ 4n+ 2;

[CPm,HP∞] if F = C and 1 ≤ m ≤ 2n+ 1;

[HPm,HP∞] if F = H and 1 ≤ m ≤ n.

Hence, the classi�cation of line bundles over HPn is the same as the classi�cation of self-maps on
HPn. Further, there is a chain of restriction maps

Z ≈ [HP 1,HP 1]← [HP 2,HP 2]← · · · ← [HP∞,HP∞].

Unfortunately, the classi�cation of self-maps on HPn for n <∞ is still an open problem. Given
f a self-map on HPn, the degree of f is the integer deg(f) such that f∗(x) = deg(f)x for the
induced map f∗ : H4(HPn;Z) → H4(HPn;Z) and a generator x ∈ H4(HPn;Z) ≈ Z. Since the
space HPn is 3-connected, the degree of f might be de�ned equivalently as the homotopy class in
π4(HPn) ≈ π3(S3) ≈ Z of the restriction of f to S4 = HP 1 ⊆ HPn.

Hence, the e�ect of a self-map on homology is determined by its degree. If two self-maps on
HPn induce the same homomorphism in homology does it follow that they are homotopic? Marcum
and Randall gave a negative answer to this question in [19]. For n = 3, 4, 5 they found an essential
self-map on HPn which induces the trivial homomorphism in homology.

By [21, Theorem 2.5], two self-maps on HPn induce the same homomorphism in homology if
and only if they are stably homotopic for n ≤ ∞.
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But, for n =∞ we have the following situation. We say that a self-map f : HP∞ → HP∞ has
degree deg(f) = d if the corresponding self-map on Ω(HP∞) = S3 has degree d in the usual sense.
It is well known that deg(f) is zero or an odd square integer [4]. In view of [22, Classi�cation
Theorem], self-maps on HP∞ are classi�ed, up to homotopy, by their degree.

The co�bration S4n+3 γn,H−−−→ HPn ↪→ HPn+1 shows that the obstruction to extending a map
f : HPn → HP∞ to HPn+1 is o(f) = fγn,H ∈ π4n+3(HP∞). But, f = in,∞,Hf

′ for the canonical
inclusion in,∞,H : HPn ↪→ HP∞ and some f ′ : HPn → HPn. Hence, alternatively we have fγn,H =
in,∞,Hf

′γn,H.

Remark 2.1. Let f : HPn+1 → HPn. Since the map in,n+1,Hγn,H : S4n+3 → HPn+1 is homotopy
trivial, we get that the map fin,n+1,Hγn,H is homotopy trivial as well. Thus, by quaternionic versions
of [7, Lemma 3.1 and Remark 3.2], we have the relation [fin,n+1,Hγn,H] = (deg(fin,n+1,H))n+1[γn,H] =
0 for homotopy classes in the group π4n+3(HPn).

Hence, deg(fin,n+1,H) = 0 and consequently the image of the map

(in,n+k,H)∗ : [HPn+k,HPn]→ [HPn,HPn]

coincides with maps of trivial degree for k ≥ 1.

Certainly, [HP 1,HP 1] ≈ Z. Further, the restriction map [HPn+1,HPn+1] → [HPn,HPn] for
n ≥ 1 might be included into an exact sequence. Namely, the Puppe sequence associated to the

co�bration S4n+3 γn,H−−−→ HPn ↪→ HPn+1 leads to the exact sequence

· · · → [E2HPn+1,HPn+1]→ [E2HPn,HPn+1]→ [S4n+5,HPn+1]→ [EHPn+1,HPn+1]→
[EHPn,HPn+1]→ [S4n+4,HPn+1]→ [HPn+1,HPn+1]→ [HPn,HPn+1]→ [S4n+3,HPn+1],

or equivalently (using skeleton arguments and the homotopy equivalence S3 ' Ω(HP∞)), to the
following one

· · · → [EHPn+1,S3]→ [EHPn,S3]→ [S4n+4,S3]→ [HPn+1,S3]

→ [HPn,S3]
∂∗

→ [S4n+3,S3]→ [HPn+1,HPn+1]→ [HPn,HPn]→ [S4n+2,S3].
(1.1)

Remark 2.2. Recall that, by [19, Conjecture] the space HPn+1 admits an essential self-map with
trivial degree provided n ≥ 2. This was veri�ed for n = 2, 3, 4 in [19] and then for n = 5, 6 in [25].
Notice that this Conjecture will follow from (1.1) if we can show that the map ∂∗ : [HPn,S3] →
[S4n+3,S3] is not surjective.

Proof. To prove the last statement, let the map ∂∗ : [HPn,S3] → [S4n+3,S3] be not surjective.
Then, by the exact sequence

0→ Im ∂∗ → [S4n+3,S3]→ [HPn+1,HPn+1]→ [HPn,HPn]→ [S4n+2,S3],

the map [S4n+3,S3]→ [HPn+1,HPn+1] is non trivial.
Now, for α ∈ [S4n+3,S3] \ Im ∂∗, we take its adjoint ᾱ : S4n+4 → HP∞. Thus, the map

ᾱpn+1,H : HPn+1 → HP∞ determines an essential self-map f : HPn+1 → HPn+1 with deg(f) = 0
and the proof is complete. q.e.d.
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Now, we analyse the restriction maps [HP 2,HP 2]→ [HP 1,HP 1] and [HP 3,HP 3]→ [HP 2,HP 2]
to state:

Proposition 2.3. There are exact sequences of pointed sets:

(1) 0 → [HP 2,HP 2] → [HP 1,HP 1] → [S6,S3]. This implies that only the trivial self-map on
HP 2 has the trivial degree.

(2) 0 → [S11,S3] → [HP 3,HP 3] → [HP 2,HP 2] → [S10,S3]. This implies the existence of an
essential self-map on HP 3 with the trivial degree.

We point out that (1) and (2) have been already shown, using di�erent methods, by Marcum
and Randall in [19].

Proof. (1): First, to make use of the exact sequence (1.1), we show that the map [S4,S3] =
[HP 1,S3] → [S7,S3] is surjective. In view of [28, Chapter V], we have [HP 1,S3] = π4(S3) =
Z2{η3}, [S7,S3] = π7(S3) = Z2{ν′η6} and, by [28, (5.9)], η3ν4 = ν′η6. But, as it is well-known,
γ1,H ≡ ±(ν4 + α1(4)) (mod Eν′), η3α1(4) = 0 and, by [28, Lemma 5.7], it holds E(η2ν

′) = 0.
Hence, the map [S4,S3] = [HP 1,S3]→ [S7,S3] is surjective and, by means of (1.1), we get the exact
sequence

0→ [HP 2,HP 2]→ [HP 1,HP 1]→ [S6,S3]

and so only the trivial self-map on HP 2 restricts to the trivial self-map on HP 1.
(2): To analyse [HP 3,HP 3], we �rst compute [HP 2,S3]. For this purpose, consider the exact

sequence
· · · → [EHP 1,S3]→ [S8,S3]→ [HP 2,S3]→ [HP 1,S3]→ [S7,S3]

determined by the Puppe sequence associated to the co�bration S7 → HP 1 ↪→ HP 2. Since, by the
proof of (1), the map [S4,S3] = [HP 1,S3]→ [S7,S3] is also an isomorphism, we derive that the map
[HP 2,S3]→ [HP 1,S3] is trivial.

Now, we show that the map [EHP 1,S3]→ [S8,S3] is trivial as well. But, [EHP 1,S3] = π5(S3) =
Z2{η4η3} and E(η2ν

′) = 0. Even though η3ν4 = ν′η6 6= 0, by Eγ1,H ≡ ±(ν5 + α1(5)) (mod E2ν′)
and E2ν′ = 2ν5 ([28, (5.5)]), we get η3η4Eγ1,H = η3η4ν5 = η3E(η3ν4) = η3E(ν′η6) = E(η2ν

′)η7 =
0. Finally, we have a bijection

Z2{ν′η6η7} = [S8,S3]
(p2,H)

∗

−−−−→
≈

[HP 2,S3].

Furthermore, [S8,S3] = π8(S3) = Z2{ν′η6η7} and, by Proposition 1.3(1), we have the relation
ν′η6η7p2,Hγ2,H = ν′η6η7(2ν8) = 0. Hence, we get that the map ∂∗ : [HP 2,S3] → [S11,S3] is trivial.
Consequently, in view of (1.1), we obtain the exact sequence

0→ [S11,S3]→ [HP 3,HP 3]→ [HP 2,HP 2]→ [S10,S3],

where Z2{ε3} = [S11,S3] ≈ [S12,HP∞] = Z2{ε̄3} for ε̄3 : S12 → HP∞ being the adjoint of ε3 : S11 →
S3. Then, the map ε̄3p3,H : HP 3 → HP∞ determines an essential self-map f : HP 3 → HP 3 with
deg(f) = 0 and the proof is complete. q.e.d.

Proposition 2.3 and Remark 2.1 yield:
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Corollary 2.4. There is a bijection

π11(S3) = Z2{ε3} ≈ [S12,HP 2]
(p3,H)

∗

−−−−→
≈

[HP 3,HP 2].

Proof. Proposition 2.3(1) and Remark 2.1 imply that the map

(i2,3,H)∗ : [HP 3,HP 2]→ [HP 2,HP 2]

is trivial. Hence, the Puppe sequence associated to the co�bration S11
γ2,H−−→ HP 2 ↪→ HP 3 leads to

the exact sequence

· · · → [EHP 2,HP 2]
(Eγ2,H)

∗

−−−−−→ [S12,HP 2]
(p3,H)

∗

−−−−→ [HP 3,HP 2]→ 0.

Consequently, there is a bijection

[S12,HP 2]/(Eγ2,H)∗[EHP 2,HP 2]
≈−→ [HP 3,HP 2].

But, [EHP 2,HP 2] = [EHP 2,HP∞] = [HP 2,S3] = Z2{ν′η6η7p2,H}. Furthermore, by the proof of
Proposition 2.3(2), we have ν′η6η7p2,Hγ2,H = 0. Consequently, (Eγ2,H)∗[EHP 2,HP 2] = 0 and we
get the required bijection

π11(S3) = Z2{ε3} ≈ [S12,HP 2]
(p3,H)

∗

−−−−→
≈

[HP 3,HP 2]. q.e.d.

Next, recall that [29, (14.1)�(14.3) Theorems and Remark] state:

Theorem 2.5. (1) If n ≥ 1 then π4n−1(HPn) ≈ Z2 is generated by η4n−1pn,H.

(2) If n ≥ 2 then π4n−2(HPn) ≈ Z2 is generated by η24n−2pn,H, and

π4n−3(HPn) ≈


0, for n ≡ 0, 2 (mod 6);

Z4, Z12 or Z24 for n ≡ 1 (mod 6);

Z2, Z4 or Z8 for n ≡ 3, 5 (mod 6);

Z3 for n ≡ 4 (mod 6)

is generated by ν+4n−3pn,H.

(3) If n ≥ 3 then π4n−4(HPn) ≈ Z, and π4n−5(HPn) ≈ Z2.

(4) If n ≥ 4 then π4n−6(HPn) ≈ Z4 or Z2 ⊕ Z2, and π
4n−7(HPn) has order at most 5,760.

(5) If n ≥ 5 then π4n−8(HPn) ≈ Z⊕ Z2 or Z⊕ Z2 ⊕ Z2.

First, to complete Theorem 2.5, we recall that by [13] there is a bijection

πn(HP 2) = (p2,H)∗π8(Sn) ≈ π8(Sn)/(ν+5 )∗π5(Sn).

Now, we present some details on that result.
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Proposition 2.6. π8−k(HP 2) ≈


0 for k < 0 or k = 3, 7, 8,

Z for k = 0,

Z2 for k = 1, 2, 4, 5, 6.

Proof. Certainly, π8−k(HP 2) = 0 if k < 0, π8−k(HP 2) ≈ Z if k = 0 and π8−k(HP 2) = 0 if k = 7, 8.
Next, consider the exact sequence

· · · → [EHP 1,S8−k]
(Eγ1,H)

∗

−−−−−→ [S8,S8−k]→ [HP 2,S8−k]→ [HP 1,S8−k]
(γ1,H)

∗

−−−−→ [S7,S8−k]

associated to the co�bration S7
γ1,H−−→ HP 1 ↪→ HP 2 and recall that γ1,H ≡ ±(ν4 +α1(4)) (mod Eν′)

for γ1,H : S7 → HP 1 = S4.
If k = 1, 2 then we get

π7(HP 2) = Z2{η7p2,H} and π6(HP 2) = Z2{η26p2,H},

respectively.
If k = 3 then we easily deduce that

π5(HP 2) = 0.

If k = 4 then [S7,S4] = Z{ν+4 }⊕Z4{Eν′}, [EHP 1,S4] ≈ [S5,S4] = Z2{η4}, [S8,S4] = Z2{ν4η7}⊕
Z2{(Eν′)η7} and η4ν5 = (Eν′)η7. Hence, we derive that

π4(HP 2) = Z2{ν4η7p2,H}.

If k = 5, since [S7,S3] = Z2{ν′η6}, [S4,S3] = Z2{η3} and η3ν4 = ν′η6, we deduce that the
map (γ1,H)∗ : [S4,S3] → [S7,S3] is an isomorphism. Next, [S8,S3] = Z2{ν′η26} and [EHP 1,S3] ≈
[S5,S3] = Z2{η23}. Then, the relations η3ν4 = ν′η6 and E(η2ν

′) = 0 imply that the map
(Eγ1,H)∗ : [EHP 1,S3]→ [S8,S3] is trivial. Consequently, we have

π3(HP 2) = Z2{ν′η26p2,H}.

If k = 6, since [S7,S2] = Z2{η2ν′η6}, [S4,S2] = Z2{η22}, and η3ν4 = ν′η6, we deduce that the
map (γ1,H)∗ : [S4,S2] → [S7,S2] is an isomorphism. Next, [S8,S2] = Z2{η2ν′η26} and [EHP 1,S2] ≈
[S5,S2] = Z2{η32}. Then, the relations E(η2ν

′) = 0 and η3ν4 = ν′η6 ([28, Lemma 5.7 and (5.9)])
imply that the map (Eγ1,H)∗ : [EHP 1,S2]→ [S8,S2] is trivial. Consequently, we have

π2(HP 2) = Z2{η2ν′η26p2,H}

and the proof is complete. q.e.d.

Remark 2.7. (1) By making use of the Hopf �bration η2 : S3 → S2, we have the exact sequence

0 = [EkHPn,S1]→ [EkHPn,S3]
η2∗−−→ [EkHPn,S2]

i∗−→ [EkHPn, BS1]

for k ≥ 0 and n ≥ 1. But, the group [EkHPn, BS1] ≈ H2(EkHPn;Z) = 0. Consequently, we get
the bijection

η2∗ : π3(EkHPn)
≈−→ π2(EkHPn)
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for k ≥ 0 and n ≥ 1. Then, the homotopy equivalence S3 ' Ω(HP∞) leads to a bijection

π2(EkHPn)
≈−→ [Ek+1HPn,HPn+[ k+1

4 ]]

for k ≥ 0 and n ≥ 1 with the integral part [r] of a real number r.
(2) The cohomotopy groups πn(En+kHP 2) for |k| ≤ 3, n ≥ 1 have been described in [12] and

for k = 4, 5, n ≥ 2 in [17]. Furthermore, (1) implies bijections

π2(Ek+2HP 2) ≈


[Ek+3HP 2,HP 2] for −3 ≤ k ≤ 0,

[Ek+3HP 2,HP 3] for 1 ≤ k ≤ 4,

[Ek+3HP 2,HP 4] for k = 5.

Now, we update Theorem 2.5(2),(4) and apply Proposition 1.4, to describe π4n−k(ElHPn) for
k + l ≤ 6 with k ≥ 0, l ≥ 1 and n ≥ 3. Setting (a, b) for the greatest common divisor of integers
a, b, we state:

Proposition 2.8. If n ≥ 3 then:

(1) π4n−3(HPn) ≈ π4n(S4n−3)/(24, n− 1)π4n(S4n−3)1;

(2) π4n−6(HPn) ≈

{
π4n−6(HPn−1) = Z2{η24n−2pn−1,H} for n odd,

π4n(S4n−6)⊕ π4n−6(HPn−1) = Z2{ν24n−6} ⊕ Z2{η24n−2pn−1,H} for n even;

(3) π4n−k(EHPn) ≈



π4n+1(S4n) for k = 0,

π4n+1(S4n−1) for k = 1,

π4n+1(S4n−2)/(24, n− 1)π4n+1(S4n−2) for k = 2,

Z for k = 3,

π4n−3(S4n−4) for k = 4
and there is the short exact sequence

0→ π4n+1(S4n−5)/(24, n− 1)π4n+1(S4n−5)→ π4n−5(EHPn)→ π4n−3(S4n−5)→ 0;

(4) π4n−k(E2HPn) ≈


π4n+2(S4n) for k = 0,

π4n+2(S4n−1)/(24, n− 1)π4n+2(S4n−1) for k = 1,

Z for k = 2,

π4n−2(S4n−3) for k = 3
and there is the short exact sequence

0→ π4n+2(S4n−4)/(24, n− 1)π4n+2(S4n−4)→ π4n−4(E2HPn)→ π4n−2(S4n−4)→ 0;

(5) π4n−k(E3HPn) ≈


π4n+3(S4n)/(24, n− 1)π4n+3(S4n) for k = 0,

Z for k = 1,

π4n−1(S4n−2) for k = 2
and there is the short exact sequence

0→ π4n+3(S4n−3)/(24, n− 1)π4n+3(S4n−3)→ π4n−3(E3HPn)→ π4n−1(S4n−3)→ 0;

1We have been informed by J. Mukai that this result has been also shown by H. Sunohara in 2000.
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(6) π4n−k(E4HPn) ≈

{
Z for k = 0,

π4n(S4n−1) for k = 1

and there is the short exact sequence

0→ π4n+4(S4n−2)/(24, n− 1)π4n+4(S4n−2)→ π4n−2(E4HPn)→ π4n(S4n−2)→ 0;

(7) π4n(E5HPn) ≈ π4n+1(S4n)
and there is the short exact sequence

0→ π4n+5(S4n−1)/(24, n− 1)π4n+5(S4n−1)→ π4n−1(E5HPn)→ π4n+1(S4n−1)→ 0;

(8) there is the short exact sequence

0→ π4n+6(S4n)/(24, n− 1)π4n+6(S4n)→ π4n(E6HPn)→ π4n+2(S4n)→ 0.

Proof. (1): Since [HPn−1,S4n−3] = 0, the Puppe sequence associated to the co�bration

S4n−1
γn−1,H−−−−→ HPn−1 ↪→ HPn

yields the exact sequence

· · · → [EHPn,S4n−3]→ [EHPn−1,S4n−3]
(Eγn−1,H)

∗

−−−−−−−→ [S4n,S4n−3]→ [HPn,S4n−3]→ 0.

Next, the suspension bijection [HPn−1,S4n−4]
≈−→ [EHPn−1,S4n−3] and [HPn−1,S4n−4] = Z{pn−1,H}

lead to Im
(
[EHPn−1,S4n−3]

(Eγn−1,H)
∗

−−−−−−−→ [S4n,S4n−3]
)

= (n−1)[S4n,S4n−3] = (24, n−1)[S4n,S4n−3].
Consequently,

π4n−3(HPn) ≈ π4n(S4n−3)/(24, n− 1)π4n(S4n−3).

(2): Since [S4n−1,S4n−6] = 0, the Puppe sequence associated to the co�bration

S4n−1
γn−1,H−−−−→ HPn−1 ↪→ HPn

yields the exact sequence

· · · → [EHPn−1,S4n−6]
(Eγn−1,H)

∗

−−−−−−−→ [S4n,S4n−6]→ [HPn,S4n−6]→ [HPn−1,S4n−6]→ 0.

Next, the suspension bijection [HPn−1,S4n−7]
≈−→ [EHPn−1,S4n−6] and [HPn−1,S4n−7]

= {ν+4n−7pn−1,H} lead to:

(i): if n is even then the map [EHPn−1,S4n−6]
(Eγn−1,H)

∗

−−−−−−−→ [S4n,S4n−6] is surjective. Conse-
quently,

π4n−6(HPn) ≈ π4n−6(HPn−1) = Z2{η24n−6pn−1,H};

(ii): if n is odd then the map [EHPn−1,S4n−6]
(Eγn−1,H)

∗

−−−−−−−→ [S4n,S4n−6] is trivial. Hence, we
have the short exact sequence

0→ [S4n,S4n−6]→ [HPn,S4n−6]→ [HPn−1,S4n−6]→ 0.
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Since η24n−2pn−1,Hγn−1,H = (n − 1)η24n−2ν
+
4n−4 = 0, we get an extension η24n−6pn−1,H

= η4n−6η4n−5pn−1,H ∈ [HPn,S4n−6] of the generator η24n−6pn−1,H ∈ [HPn−1,S4n−6] (Theorem
2.5(2)) which leads to a splitting of that short sequence. Hence,

π4n−6(HPn) ≈ π4n(S4n−6)⊕ π4n−6(HPn−1) = Z2{ν24n−6} ⊕ Z2{η24n−2pn−1,H}.

(3)�(8): Let n ≥ 3. Notice that Proposition 1.3 and the pushout

S4n−1� _

��

γn−1,H // HPn−1

��

pn−1,H // HPn−1/HPn−2

��
D4n // HPn // HPn/HPn−2

yield HPn/HPn−2 ' S4n−4 ∪(n−1)ν+
4(n−1)

e4n. Thus, we have a co�bration

S4n−1
(n−1)ν+

4(n−1)−−−−−−−−→ S4n−4 ↪→ HPn/HPn−2

which leads to the exact sequence

· · · → [S4n+l−3,S4n−k]
(n−1)(ν+

4n+l−3)
∗

−−−−−−−−−−−→ [S4n+l,S4n−k]→ [El(HPn/HPn−2),S4n−k]→

[S4n+l−4,S4n−k]
(n−1)(ν+

4n+l−4)
∗

−−−−−−−−−−−→ [S4n+l−1,S4n−k]

for k, l ≥ 0 and n ≥ 3. Next, in view of Proposition 1.4, we have

[ElHPn,S4n−k] ≈ [El(HPn/HPn−2),S4n−k]

for k + l ≤ 6 with k, l ≥ 0 and n ≥ 3.
Then, we apply presentations of homotopy groups πn+i(Sn) for 0 ≤ i ≤ 6 ([28, Chapter V]) and

ν+n ηn+5 = νnηn+5 = 0 for n ≥ 6 ([28, (3.9)]). If l = 0 then we get π4n(HPn) ≈ Z and π4n−k(HPn)
for 1 ≤ k ≤ 6 as stated in Theorem 2.5. Whereas, for 1 ≤ l ≤ 6 we get the statements (1)�(6) and
the proof is complete. q.e.d.

Since EkHPm is 1-connected, we have [EkHPm,RPn] = [EkHPm,Sn] for k ≥ 0. Next,
H2(EkHPm;Z) = 0 and Lemma 1.5 yields [EkHPm,CPn] = [EkHPm,S2n+1] for k ≥ 0. Now,
consider 4m < n and notice that [HPm,Sn] = [HPm,S∞] = 0. This implies [HPm,RPn] =
[HPm,RP∞] = 0. Also, by Hopf Theorem [HPm,RP 4m] = [HPm,S4m] = H4m(HPm;Z) ≈ Z.
Consequently, applying Theorem 2.5 and Proposition 2.8, we may state:

Corollary 2.9. (1) If n ≥ 1 then [HPn,CP 2n−1] ≈ [HPn,RP 4n−1] ≈ Z2;

(2) if n ≥ 2 then [HPn,RP 4n−2] ≈ Z2;

(3) if n ≥ 2 then [HPn,CP 2n−2] ≈ [HPn,RP 4n−3] ≈ [S4n,S4n−3]
(n−1)[S4n,S4n−3] ;

(4) if n ≥ 3 then [HPn,RP 4n−4] ≈ Z;
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(5) if n ≥ 2 then [HPn,CP 2n−3] ≈ [HPn,RP 4n−5] ≈ Z2;

(6) if n ≥ 4 then [HPn,RP 4n−6] ≈

{
Z2 if n is odd,

Z4 or Z2 ⊕ Z2 if n is even;

(7) if n ≥ 4 then [HPn,CP 2n−4] ≈ [HPn,RP 4n−7] has order at most 5,760;

(8) if n ≥ 5 then [HPn,RP 4n−8] ≈ Z⊕ Z2 or Z⊕ Z2 ⊕ Z2.

Applying Theorems 1.2, 2.5 and Proposition 2.8, we get:

Corollary 2.10. (1) If n ≥ 1 then [EHPn,RP 4n] ≈ Z2;

(2) if n ≥ 2 then [EHPn,RP 4n−1] ≈ [EHPn,CP 2n−1] ≈ Z2;

(3) if n ≥ 2 then [EHPn,RP 4n−2] ≈ [S4n,S4n−3]
(n−1)[S4n,S4n−3] ;

(4) if n ≥ 3 then [EHPn,CP 2n−2] ≈ [EHPn,RP 4n−3] ≈ Z;

(5) if n ≥ 3 then [EHPn,RP 4n−4] ≈ Z2;

(6) if n ≥ 4 then [EHPn,CP 2n−3] ≈ [EHPn,RP 4n−5] ≈

{
Z2 if n is odd;

Z4 or Z2 ⊕ Z2 if n is even;

(7) if n ≥ 4 then [EHPn,RP 4n−6] has order at most 5,760;

(8) if n ≥ 5 then [EHPn,CP 2n−4] ≈ [EHPn,RP 4n−7] ≈ Z⊕ Z2 or Z⊕ Z2 ⊕ Z2.

We close the paper with:

Remark 2.11. (1) Lemma 1.5 leads to [EkHPm,CPn] ≈ [EkHPm,S2n+1] for k,m, n ≥ 0.
Hence, for k + 4m < 2n+ 1 we have [EkHPm,CPn] ≈ [EkHPm,S2n+1] = 0 and
[E2n−4m+1HPm,CPn] ≈ [E2n−4m+1HPm,S2n+1] ≈ Z.

If m ≤ n then (by means of skeleton reasons):

2. [RP 4m+k,HPn] ≈ [RP 4m+k,HPm] ≈ [RP 4m+k,HP∞] for k = 0, 1, 2;

3. [CP 2m+k,HPn] ≈ [CP 2m+k,HPm] ≈ [CP 2m+k,HP∞] for k = 0, 1;

4. [HPm,HPn] ≈ [HPm,HP∞];

5. [ERP 4m+k,HPn] ≈ [ERP 4m+k,HPm] ≈ [RP 4m+k,S3] for k = 0, 1;

6. [ECP 2m+k,HPn] ≈ [ECP 2m+k,HPm] ≈ [CP 2m+k,S3] for k = 0, 1;

7. [EHPm,HPn] ≈ [HPm,S3];

8. [E2FP 4m
d ,HPn] ≈ [EFP 4m

d ,S3] for F = R,C or H, where d = dimR F.
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